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Minimal conductivity in bilayer graphene
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Abstract. Using the Landauer formula approach, it is proven that minimal conductivity of order e2/h found
experimentally in bilayer graphene is an intrinsic property. For the case of ideal crystals, the conductivity
turns out to be equal to e2/2h per valley per spin. A zero-temperature shot noise in bilayer graphene is
considered and the Fano factor is calculated. Its value 1–2/π is close to the value 1/3 found earlier for
single-layer graphene.

PACS. 73.43.Cd Theory and modeling – 81.05.Uw Carbon, diamond, graphite

It has been observed recently that bilayer graphene, i.e.
a two-dimensional allotrope of carbon consisting of two
graphite atomic sheets, has a minimal conductivity of or-
der e2/h [1]. The same property has been found earlier
in the single-layer graphene [2,3]. Both single- and bi-
layer graphene are gapless semiconductors, with conical
and parabolic touching of electron and hole bands, respec-
tively [1–3]. The charge carriers in single-layer graphene
are massless Dirac fermions which is a crucial point
when explaining the conductivity minimum [4–6]. Ac-
tually, this anomalous property of the two-dimensional
massless fermions was considered theoretically [7–9] before
the discovery of graphene. A crucial physical phenomenon
here is the Zitterbewegung of quantum ultrarelativistic
particles [4] which plays a role of “intrinsic” disorder;
this is confirmed by calculations of the shot noise in ideal
graphene for zero doping which turns out to have the same
value (Fano factor 1/3) as disordered metals [5]. At the
same time, observation of the finite minimal conductivity
in bilayer graphene is a serious challenge for theory [1].
Here I present a solution of this problem based on the
same Landauer formula approach which was used earlier
for the single-layer case [4,5].

Bilayer graphene is a zero-gap semiconductor with
parabolic touching of the electron and hole bands de-
scribed by the single-particle Hamiltonian [1,10]

H =
(

0 − (px − ipy)2 /2m
− (px + ipy)

2
/2m 0

)
(1)

where pi = −i�∂/∂xi are electron momenta operators and
m is the effective mass (here we ignore some complica-
tions due to large-scale hopping processes which are im-
portant for a very narrow range of the Fermi energies [10]).
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Fig. 1. Geometry of the sample.

Two components of the wave function originate from the
crystallographic structure of graphite sheets with two car-
bon atoms in the sheet per elementary cell. There are two
touching points per Brillouin zone, K and K ′. For ideal
crystals, no Umklapp processes between these points are
allowed and thus they can be considered independently.
Our final result for the conductivity should be just mul-
tiplied by four due to two touching points and two spin
projections (we will not take into account electron spin
explicitly in our consideration). To calculate the conduc-
tivity at zero energy we will use the Landauer formula ex-
pressing the conductance of the system in terms of trans-
mission coefficients. Similar to reference [4] we will use the
simplest boundary conditions assuming that the sample is
a ring of length Ly in the y-direction and leads connected
with the sample at x = 0 and x = Lx are made from
doped bilayer graphene with potential V0 > 0 and Fermi
energy EF = −V0 = −�

2k2
F /2m (Fig. 1).
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Let us first find the solution of the Schrödinger equa-
tion with zero energy, HΨ = 0 where Ψ is a “spinor” with
components ψ1 and ψ2. They satisfy the equations

(
∂

∂x
− i

∂

∂y

)2

ψ2 = 0, (2)

(
∂

∂x
+ i

∂

∂y

)2

ψ1 = 0. (3)

Due to the periodicity in the y direction both wave func-
tions should be proportional to exp (ikyy) where ky =
2πn/Ly, n = 0,±1,±2, ... This immediately gives us the
following x-dependence for the wave functions:

ψ1 (x) = (A1x+B1) ekyx,

ψ2 (x) = (A2x+B2) e−kyx (4)

(0 < x < Lx). The constants Ai and Bi should be found
from the boundary conditions at x = 0 and x = Lx which
are nothing but continuity conditions for both functions
ψ1 and ψ2 and their derivatives [11].

It will be shown later that the values of ky essential
for the electron transmission are of the order of L−1

y and
thus much smaller than kF in the leads. Therefore, we can
restrict ourselves to the case of normal incidence only for
the wave functions outside the sample:

ψ1 (x) = eikF x + re−ikF x + cekF x

ψ2 (x) = eikF x + re−ikF x − cekF x, (5)

for x < 0 and

ψ1 (x) = teikF (x−Lx) + de−kF (x−Lx)

ψ2 (x) = teikF (x−Lx) − de−kF (x−Lx), (6)

for x > Lx. Here r and t are reflection and transmission
coefficients, respectively. One should stress that to satisfy
all the boundary conditions for the case of a bilayer, one
has to include not only oscillatory but also exponentially
decaying solutions of the Schrödinger equation [11].

Using the boundary conditions at the sample-lead
boundary, one finds the set of linear equations

1 + r + c = B1

1 + r − c = B2

kF [i (1 − r) + c] = A1 +B1ky

kF [i (1 − r) − c] = A2 −B2ky

F1X = t+ d

F2X
−1 = t− d

(F1ky +A1)X = k (it− d)

(−F2ky +A2)X−1 = k (it+ d) , (7)

where Fi = AiLx +Bi, X = exp (kyLx) .
By use of the assumptions

kF � ky, L
−1
x (8)

one can easily solve the equations (7) and find

t =
2iLx

kF

cosh (kyLx)
L2

x + 2i
k2

F
cosh2 (kyLx)

. (9)

Corrections to this formula are of order of 1/(kFLx); we
cannot keep them in the answer since terms of the same
order of magnitude have been omitted by considering the
normal-incidence case for the wave functions in the leads
(5), (6).

Thus, for the transmission coefficient Tn =
|t (ky = 2πn/Ly)|2 one obtains the final result

Tn =
4k2

FL
2
x cosh2 (kyLx)

k4
FL

4
x + 4 cosh4 (kyLx)

. (10)

One can see that the transmission coefficient reaches a
maximum value equal to 1 at cosh (kyLx) = kFLx/

√
2 or,

approximately, at

ky/kF � ln
(√

2kFLx

)
/ (kFLx) (11)

which obviously satisfies the condition (8) for macroscop-
ically large Lx � k−1

F . Note that complete transmission
through the potential barrier for some finite incident an-
gles is a characteristic property of the bilayer case, in con-
trast with the single layer, where complete transmission
takes place at exactly normal incidence [11].

Using the Landauer formula (for review, see
Refs. [12,13]) one can calculate the conductance per valley
per spin

g =
e2

h

∞∑
n=−∞

Tn. (12)

Similar to references [4,5] to calculate the conductivity of
bilayer graphene at zero energy one should consider the
case Ly � Lx. In that case the sum in equation (12) can
be replaced by an integral. Introducing the integration
variable z = cosh (2kyLx) + 1 and taking into account
condition (8) one finds for the conductivity σ = (Lx/Ly) g:

σ =
e2

2h
. (13)

Thus, the conductivity of bilayer graphene has the same
order of magnitude as for the single-layer case (where the
coefficient 1/π, instead of 1/2, was obtained by similar
method in Refs. [4,5]). This result looks rather unexpected
since the electron spectra in these two cases are drastically
different. More accurate calculations of the integral gives
a correcting multiplier 1+ 4 ln(kF Lx)

πk2
F L2

x
+ ... in equation (13).

Following reference [5] one can estimate the Fano fac-
tor characterizing the intensity of electron shot noise:

F =

∞∑
n=−∞

Tn (1 − Tn)

∞∑
n=−∞

Tn

(14)
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(for a general review of quantum-limited shot noise and
physical meaning of the Fano factor, see Refs. [13,14]). A
straightforward calculation for the case Ly � Lx gives us
the answer

F = 1 − 2
π

(15)

which is rather close to the value 1/3 found for the case
of the single layer, as well as for the case of disordered
metals [5]. This means that, in a sense, the case of bilayer
graphene is also characterized by some “intrinsic” disorder
similar to the Zitterbewegung [4].

Unfortunately, the accuracy of experimental data [1] is
not sufficient to establish the numerical coefficient in the
expression for the minimal conductivity. For the case of a
single layer it is close to 1, instead of 1/π.

To conclude, we have demonstrated that the Dirac en-
ergy spectrum is actually not important for the existence
of minimal conductivity in graphene. The latter has the
same order of magnitude both for conical (a single-layer
case) and for parabolic (a bilayer case) energy spectrum
near a band crossing point.
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